Full Content is available to subscribers

Subscribe/Learn More  >

GDC-Y2O3 Oxide Based Two Phase Nanocomposite Electrolytes

[+] Author Affiliations
Rizwan Raza, Bin Zhu

KTH - Royal Institute of Technology, Stockholm, Sweden

Ghazanfar Abbas

KTH - Royal Institute of Technology, Stockholm, Sweden; Bahuddin Zakariya University, Multan, Pakistan

Paper No. FuelCell2010-33322, pp. 365-370; 6 pages
  • ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology
  • ASME 2010 8th International Fuel Cell Science, Engineering and Technology Conference: Volume 1
  • Brooklyn, New York, USA, June 14–16, 2010
  • Conference Sponsors: Advanced Energy Systems Division
  • ISBN: 978-0-7918-4404-5 | eISBN: 978-0-7918-3875-4
  • Copyright © 2010 by ASME


An oxide based two phase nanocomposite electrolyte (Ce0.9 Gd0.1 O2 ) was synthesized by a co-precipitation method and coated with Yttrium oxide (Y2 O3 ). The nanocomposite electrolyte showed the significant performance of power density 750mW/cm2 and higher conductivities at relatively low temperature 550°C. Ionic conductivities were measured with electrochemical impedance spectroscopy (EIS) and DC (4 probe method). The structural and morphological properties of the prepared electrolyte were investigated by means of High Resolution Scanning Electron Microscopy (HRSEM). The thermal stability was determined with Differential Scanning Calorimetry (DSC). The particle size was calculated with Scherrer formula and compare with SEM results, 15–20 nm is in a good agreement with the SEM and X-ray diffraction (XRD) results. The purpose of the study to introduce the functional nanocomposite materials, for advanced fuel cell technology (NANOCOFC) to meet the challenges of solid oxide fuel cell (SOFC).

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In