0

Full Content is available to subscribers

Subscribe/Learn More  >

Evaluating Methods for Infiltration of LSCF Cathodes With Mixed Electric/Ionic Conductors for Improved Oxygen Exchange

[+] Author Affiliations
David Tucker, Ayyakkannu Manivannan, Dan Haynes, Harry Abernathy, Nick Miller

National Energy Technology Laboratory, Morgantown, WV

Karon Wynne

West Virginia University, Morgantown, WV

Anginés Matos

University of Puerto Rico at Mayaguez, Mayaguez, Puerto Rico

Paper No. FuelCell2010-33214, pp. 305-309; 5 pages
doi:10.1115/FuelCell2010-33214
From:
  • ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology
  • ASME 2010 8th International Fuel Cell Science, Engineering and Technology Conference: Volume 1
  • Brooklyn, New York, USA, June 14–16, 2010
  • Conference Sponsors: Advanced Energy Systems Division
  • ISBN: 978-0-7918-4404-5 | eISBN: 978-0-7918-3875-4
  • Copyright © 2010 by ASME

abstract

Infiltration methods for improving lanthanum strontium cobalt ferrite (LSCF) cathode performance through catalyst surface modification were evaluated at the U.S. Department of Energy, National Energy Technology Laboratory. Infiltration of mixed conductors into LSCF cathodes of solid oxide fuel cells promises a low cost method of improving oxygen exchange and performance in these materials at lower temperatures. LSCF cathodes on Nickel-Yttria Stabilized Zirconia (Ni-YSZ) anode supported cells were infiltrated with strontium-doped lanthanum zirconate (LSZ) pyrochlores using two methods. An aqueous solution of nitrate salts was vacuum infiltrated into the cathodes of anode supported button cells, and the cells were heated to form the pyrochlore phase in-situ. This was compared to the efficacy of infiltrating a suspension of pyrochlore nanoparticles. Different dispersants were used to prepare the nanoparticle suspensions at varying concentrations and pH levels, and the results are compared.

Copyright © 2010 by ASME
Topics: Oxygen

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In