0

Full Content is available to subscribers

Subscribe/Learn More  >

Design and Development of Thermoplastic Polyurethane Based Composite Membranes

[+] Author Affiliations
R. Vasanthakumari

B. S. Abdur Rahman University, Chennai, India

Paper No. FuelCell2010-33050, pp. 21-26; 6 pages
doi:10.1115/FuelCell2010-33050
From:
  • ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology
  • ASME 2010 8th International Fuel Cell Science, Engineering and Technology Conference: Volume 1
  • Brooklyn, New York, USA, June 14–16, 2010
  • Conference Sponsors: Advanced Energy Systems Division
  • ISBN: 978-0-7918-4404-5 | eISBN: 978-0-7918-3875-4
  • Copyright © 2010 by ASME

abstract

Polymer electrolyte membranes used in fuel cells are proton selective and hence allows only protons to pass through it. The electrolyte composition, morphology and water absorption properties of the membrane greatly influence the performance of the fuel cell. For example the membranes used in fuel cells should meet following requirements. • Good thermal stability above 250°C. • Proton conductivity greater than 10^-2 S/cm. • Good water absorption and water retaining capacity. • mechanical strength and flexibility. The present paper is focused on design and development of a membrane suitable for fuel cell application. The base polymer chosen in this present work has been thermoplastic polyurethane because of its high flexibility, temperature resistance and solubility in organic solvent such as DMF. Fabrication of the coating machine was done and thermoplastic polyurethane (TPU) based Composite membranes with an average thickness of 40 microns were cast. Sulphonation of polystyrene was carried out to get SPS with assay 98%. TPU based composite membranes with conducting resins of 25% SPEEK, 4%SPS and 10% PANI were cast and characterized by FTIR, DSC, four probe conductivity and SEM. The composite membranes were studied for fuel cell suitability. The studies show that a current in the range of 0.5×10−4 A to 0.8344×10−4 A and about 0.5V can be drawn out of these membranes. The results were compared with that of NAFION membrane.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In