0

Full Content is available to subscribers

Subscribe/Learn More  >

Integrated Combustor and Vane Concept in Gas Turbines

[+] Author Affiliations
Budimir Rosic

Oxford University, Oxford, UK

John D. Denton, John H. Horlock

Cambridge University, Cambridge, UK

Sumiu Uchida

Mitsubishi Heavy Industries Ltd., Takasago, Japan

Paper No. GT2010-23170, pp. 2781-2791; 11 pages
doi:10.1115/GT2010-23170
From:
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 7: Turbomachinery, Parts A, B, and C
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4402-1 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME

abstract

This paper numerically investigates the interaction between multiple can combustors and the first vane in an industrial gas turbine with 16 can combustors and 32 vanes in order to find ways of reducing the overall cooling requirements. Two promising concepts for the overall cooling reduction are presented. In the first, by minimising the axial distance between the combustor wall and the vane, the stagnation region at the LE of every second vane can be effectively shielded from the hot mainstream gases. The LE shielding allows continuous cooling slots to be used (as an alternative to discrete cooling holes) to cool downstream parts of the vane using a portion of the saved LE showerhead cooling air. The second concept proposes a full combustor and first vane integration. In this novel concept the number of vanes is halved and the combustor walls are used to assist the flow turning. All remaining vanes are fully integrated into the combustor walls. In this way the total wetted area of the integrated system is reduced, and by shielding the LEs of the remaining vanes the total amount of cooling air can be reduced. The proposed combustor and first vane integration does not detrimentally affect the aerodynamics of the combustor and vane system. The concept also simplifies the design and should lower the manufacturing costs.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In