0

Full Content is available to subscribers

Subscribe/Learn More  >

A Method for Evaluating the Effect of Circumferential Inlet Distortion on the Aerodynamic Stability of Multi-Stage Axial-Flow Compressors

[+] Author Affiliations
Tsuguji Nakano, Andy Breeze-Stringfellow

GE Aviation, Cincinnati, OH

Paper No. GT2010-23541, pp. 2671-2683; 13 pages
doi:10.1115/GT2010-23541
From:
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 7: Turbomachinery, Parts A, B, and C
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4402-1 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME

abstract

A simple engineering parameter to evaluate the stability of high-speed multi-stage compressors with distorted inlet flow has been derived based on a simplified semi-compressible linear stability model. The parameter consists of steady-state flow quantities and geometric parameters of the compressor and it indicates that the circumferential integral of the slope of the steady-state individual blade row static pressure rise characteristics is important in the determination of the compressor stability limit in the presence of distortion. The parameter reduces to the author’s rotating stall inception parameter in the limit of non-distorted inlet flow. Since the model includes a downstream plenum and throttle, a condition for pure surge inception with undistorted inlet flow has been deduced. The pure surge conditions can be reduced to the classical dynamic and static instability conditions in the limit of a constant annulus area incompressible compressor. The results indicate that rotating stall always precedes surge instability, as many engineers and researchers would expect from experience. The parameter for instability with inlet distortion was calculated using test data measured in a high-speed 5-stage compressor with two different types of circumferential inlet distortion, and the results show that the parameter has a strong correlation with the data and is an improvement over the classical incompressible stability parameter. The results demonstrate that the parameter captures much of the physics important during the instability inception in a high-speed multi-stage compressor subjected to circumferential inlet distortion. The parameter clearly shows how each compressor component’s characteristics contribute to the overall stability in a high speed axial multi-stage compressor, therefore, it will aid engineers and designers in their understanding and prediction of the aerodynamic instability inception phenomena.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In