0

Full Content is available to subscribers

Subscribe/Learn More  >

Unsteady Aerodynamics of a Low Aspect Ratio Turbine Stage: Modeling Issues and Flow Physics

[+] Author Affiliations
G. Persico, A. Mora, P. Gaetani

Politecnico di Milano, Milano, Italy

M. Savini

Università degli Studi di Bergamo, Dalmine, Italy

Paper No. GT2010-22927, pp. 2499-2510; 12 pages
doi:10.1115/GT2010-22927
From:
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 7: Turbomachinery, Parts A, B, and C
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4402-1 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME

abstract

In this paper the three-dimensional unsteady aerodynamics of a low aspect ratio, high pressure turbine stage is studied. Fully unsteady, three-dimensional numerical simulations are performed using the commercial code ANSYS-CFX The numerical model is critically evaluated against experimental data. Measurements were performed with a three-dimensional fast-response aerodynamic pressure probe in the closed-loop test rig operating in the Laboratorio di Fluidodinamica delle Macchine of the Politecnico di Milano (Italy). An analysis is first reported about the strategy to reduce the CPU and memory requirements while performing three-dimensional simulations of stator-rotor interaction in actual turbomachinery. What emerges as the best choice, at least for subsonic stages, is to simulate the unsteady behaviour of the rotor blade row alone by applying the stator outlet flow field as rotating inlet boundary condition. When measurements are available upstream of the rotor the best representation of the experimental results downstream of the stage is achieved. The agreement with the experiments achieved at the rotor exit makes the CFD simulation a key-tool for the comprehension and the interpretation of the physical mechanisms acting inside the rotor channel (often difficult to achieve using experiments only). Numerical investigations have been carried out by varying the incidence at the vane entrance. Different vane incidence angles lead to different size, position, and strength of secondary vortices coming out from the stator. The configuration is chosen is such a way to isolate the effects of the vortex-blade interaction. Results show that some general trends can be recognized in the vortex-blade interaction. The sense of rotation and the spanwise position of the incoming vortices play a crucial role on their interaction with the rotor vortices, thus determining both the time-mean and the time-resolved characteristics of the stage-exit secondary field.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In