Full Content is available to subscribers

Subscribe/Learn More  >

Unsteady CFD Methods in a Commercial Solver for Turbomachinery Applications

[+] Author Affiliations
Thomas Biesinger, Christian Cornelius, Christoph Rube

Siemens AG, Mülheim an der Ruhr, Germany

André Braune

ANSYS Germany GmbH, Otterfing, Germany

Rubens Campregher, Philippe G. Godin

ANSYS Canada Ltd., Waterloo, ON, Canada

Gregor Schmid

Technische Universität Darmstadt, Darmstadt, Germany

Laith Zori

ANSYS Inc., Lebanon, NH

Paper No. GT2010-22762, pp. 2441-2452; 12 pages
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 7: Turbomachinery, Parts A, B, and C
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4402-1 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME


Modern CFD flow solvers can be readily used to obtain time-averaged results on industrial size turbomachinery flow problem at low computational cost and overall effort. On the other hand, time-accurate computations are still expensive and require substantial resources in CPU and computer memory. However, numerical techniques such as phase shift and time inclining method can be used to reduce overall computational cost and memory requirements. The unsteady effects of moving wakes, tip vortices and upstream propagation of shock waves in the front stages of multi-stage compressors are crucial to determine the stability and efficiency of gas turbines at part-load conditions. Accurate predictions of efficiency and aerodynamic stability of turbomachinery stages with strong blade row interaction based on transient CFD simulations are therefore of increasing importance today. The T106D turbine profile is under investigation as well as the transonic compressor test rig at Purdue. The main objective of this paper is to contribute to the understanding of unsteady flow phenomena that can lead to the next generation design of turbomachinery blading. Transient results obtained from simulations utilizing shape correction (phase shift) and time inclining methods in an implicit pressure-based solver, are compared with those of a full transient model in terms of computational cost and accuracy.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In