0

Full Content is available to subscribers

Subscribe/Learn More  >

PIV Analysis on the Effect of Stator Loading on Transonic Blade-Row Interactions

[+] Author Affiliations
Scott B. Reynolds, Steven E. Gorrell

Brigham Young University, Provo, UT

Jordi Estevadeordal

Innovative Scientific Solutions, Inc., Dayton, OH

Paper No. GT2010-22576, pp. 2419-2430; 12 pages
doi:10.1115/GT2010-22576
From:
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 7: Turbomachinery, Parts A, B, and C
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4402-1 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME

abstract

Experiments have been performed to investigate interactions between a loaded stator and transonic rotor. The Blade Row Interaction (BRI) rig is used to simulate an embedded transonic fan stage with realistic geometry (thin trailing edge) which produces a wake through diffusion. Details of the unsteady flow field between the stator and rotor were obtained using PIV. Flow-visualization images and PIV data that facilitate analysis of vortex shedding, wake motion, and wake-shock-interaction phenomena are presented. Stator wake and rotor-bow-shock interactions are analyzed for three stator/rotor axial spacings, and two stator loadings. Specific shed vortices and wake topological features are isolated for each configuration. The data analysis focuses on measuring the vortex size, strength, and location as it forms on the stator trailing edge and propagates downstream into the rotor passage. It was observed that vortex shedding is synchronized to the passing of a rotor bow shock. Results show that the circulation of a vortex increased by 19 to 23% from far to close spacing due to the increased strength of the rotor bow shock impacting the stator trailing edge. Reduction in stator loading decreased shed vortex circulation for the same stator/rotor axial spacing by 20 to 25%. Pitchwise radius of vortices also decreased by 13 to 19% from far to close spacing. Such changes in vortex size and strength should be accounted for to predict the effect of unsteady blade-row interactions on transonic compressor performance.

Copyright © 2010 by ASME
Topics: Blades , Stators

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In