0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Investigation of the Unsteady Flow Fields in Centrifugal Compressor Diffusers

[+] Author Affiliations
Ahmed Abdelwahab

Praxair Inc., Tonawanda, NY

Paper No. GT2010-22489, pp. 2405-2418; 14 pages
doi:10.1115/GT2010-22489
From:
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 7: Turbomachinery, Parts A, B, and C
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4402-1 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME

abstract

The performance of radial diffusers in centrifugal compressor stages is influenced by the impeller exit flow characteristics as well as the vaneless and semi-vaneless space flow characteristics. Both steady and unsteady flow interactions are present due to the propagation of pressure fields upstream and downstream between the impeller and diffuser. Furthermore, unsteady flow interactions occur when the impeller moving wakes developed due to secondary and tip clearance flows propagate through the diffuser passages. The present study aims at presenting a model that describes the unsteady wake propagation in the centrifugal compressor diffuser using vorticity principles. 3D unsteady Reynolds-Averaged Navier Stokes simulations are performed for both a vaned and a vaneless diffuser centrifugal stage. The simulations are used to examine the mechanism for the unsteady wake flow interactions in the diffuser. The unsteady streamwise vortical structures present in the impeller wakes and their propagation through the diffuser flow field is presented. The effect of the unsteady flow on loss production in the compressor stage is investigated. The velocity perturbations due to these vortical structures are presented. The present study indicates that the impeller wake propagation in the diffuser can be represented by a series of unsteady streamwise vortices superimposed on a uniform flow field. These vortices result in velocity perturbations that take the form of both positive and negative jets in the diffuser.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In