0

Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Recirculation Device on Performance of High Pressure Ratio Centrifugal Compressor

[+] Author Affiliations
Hideaki Tamaki

IHI Corporation, Yokohama, Japan

Paper No. GT2010-22570, pp. 1879-1889; 11 pages
doi:10.1115/GT2010-22570
From:
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 7: Turbomachinery, Parts A, B, and C
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4402-1 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME

abstract

Centrifugal compressors used for turbochargers need to achieve a wide operating range. A recirculation device, which consists of a bleed slot, an upstream slot and an annular cavity connecting both slots, is often applied to them. The author developed a high pressure ratio centrifugal compressor with pressure ratio 5.7 for a marine use turbocharger. In order to enhance operating range, a recirculation device was applied, the benefits of its application ensuring. This paper discusses how the recirculation device affects the flow field in the above transonic centrifugal compressor by using steady 3D calculations. It is reported that the interaction between shock and tip leakage vortex is one of the primary causes of stall inception in the impeller. Analysis of shock and tip leakage flow behavior leads to an understanding of the basic mechanism of the enhancement of operating range by the recirculation device. Hence this study focuses on the effect of the recirculation devices on the shock and tip leakage flow. Steady 3D calculations were performed and the effect of the recirculation device was clarified. The bleed slot of the recirculation device works in a similar way to circumferential grooves applied to axial compressors. It reduces the blade loading in the impeller tip region. And hence the velocity of tip leakage flow exiting the bleed slot becomes lower compared with that without the recirculation device. The flow through the bleed slot impinges on the tip leakage flow originated upstream and blocks the extension of the tip leakage flow. It also deflects the trajectory of the tip leakage vortex. In addition to these effects, the bleed slot removes the fluid near the casing. The shock moves downstream due to the reduction of the blockage. All these effects induced by the recirculation device are considered to lead to the suppression of the extension of blockage and to contribute to the enhancement of the compressor operating range.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In