0

Full Content is available to subscribers

Subscribe/Learn More  >

Simulation of Particle Trajectories and Erosion Through a Centrifugal Compressor

[+] Author Affiliations
Adel Ghenaiet

EMP, Algiers, Algeria

Paper No. GT2010-22417, pp. 1815-1830; 16 pages
doi:10.1115/GT2010-22417
From:
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 7: Turbomachinery, Parts A, B, and C
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4402-1 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME

abstract

Under particulate environments, turbocompressors suffer from erosion which is of serious concern to both manufacturers and users of these equipments. In this paper, the results of a numerical study of particle laden air flows through a radial compressor ‘Schwitzer’ are presented. Particle trajectories used an updated version of our in-house code based on a stochastic Lagrangian tracking approach, where equations of particle motion are solved separately from the air-stream. This latter considers the effects of turbulence on particles, initial locations of particles and random particle size and rebound. The tracking of particles in different computational cells and theirs corresponding impacts used the finite element method. The number of particles, their sizes and initial positions were specified according to a concentration profile and an AC coarse (0–200 micron) size distribution. The simulations results are depicting that the impeller rotating speed and particle size strongly affect the trajectories, locations of impacts and erosion rates. For a high rotational speed, erosion is spreading over the pressure side of the main blade and splitter. Regions of high erosion rates are seen on the blades leading edges and towards the upper corner at blade exit. However, the main blade is highly eroded than the splitter. The suction side is almost without erosion except near the leading edge. Furthermore, the casing is mainly affected over the inducer and along the tips of blades.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In