0

Full Content is available to subscribers

Subscribe/Learn More  >

The Effects of Radial Inlet on the Performance of Variable Inlet Guide Vanes in a Centrifugal Compressor Stage

[+] Author Affiliations
Jiajian Tan, Datong Qi

Xi’an Jiaotong University, Xi’an, China

Rui Wang

Shenyang Blower Works Group Co., Ltd, Shenyang, China

Paper No. GT2010-22177, pp. 1723-1732; 10 pages
doi:10.1115/GT2010-22177
From:
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 7: Turbomachinery, Parts A, B, and C
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4402-1 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME

abstract

Variable inlet guide vanes (VIGVs) can regulate pressure ratio and mass flow at constant rotational speed in centrifugal compressors as a result of inducing a controlled prewhirl in front of impellers. Radial inlets and VIGVs are typical upstream components in front of the first-stage impellers in many pipeline and multistage centrifugal compressors. However, previous investigations on VIGVs in centrifugal compressors were mostly conducted under the condition of axial inlets, and present work aims to focus on the effects of radial inlet on the VIGVs performance of a centrifugal compressor stage. The axial inlet stage model was compared with the radial inlet stage model using numerical flow simulation. The flow from the radial inlet was nonuniform in both circumferential and radial direction, thus the VIGVs, the impeller, the vaneless diffuser, and the return vane channel were modeled with fully 360-deg passages. The three-dimensional flow field was numerically simulated with FINE™/Turbo at VIGVs setting angles range from −20° to +60°. The overall stage performance parameters were obtained by integrating the field quantities. The simulation results show that the performance of VIGVs was significantly degraded by its inlet flow distortions resulting from a radial inlet. The stage performance map indicates that the overall stage polytropic efficiency decreased by an average of 2.5% and total pressure ratio decreased by an average of 1% because of the flow distortions at different VIGVs setting angles, in comparison with the axial stage model.

Copyright © 2010 by ASME
Topics: Compressors

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In