0

Full Content is available to subscribers

Subscribe/Learn More  >

Two Schemes of Multi-Objective Aerodynamic Optimization for Centrifugal Impeller Using Response Surface Model and Genetic Algorithm

[+] Author Affiliations
Xiaomin Liu, Wenbin Zhang

Xi’an Jiaotong University, Xi’an, Shaanxi, China

Paper No. GT2010-23775, pp. 1041-1053; 13 pages
doi:10.1115/GT2010-23775
From:
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 7: Turbomachinery, Parts A, B, and C
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4402-1 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME

abstract

This paper presents two schemes of multi-objective aerodynamic optimization design for centrifugal impeller blade. One is genetic algorithm(GA) combined with a commercial computational fluid dynamics(CFD) software, and the other is GA combined with the surrogate model. The two schemes are respectively applied to multi-objective optimization for the same centrifugal impeller blade. For multi-objective genetic algorithm(MOGA), non-uniform mutation and Pareto ranking and fitness-sharing technique are used to obtain fast convergence speed and good capability to search the Pareto front of GA. For the surrogate model based on radial basis function(RBF), design of experiments(DOE) technology is adopted to select samples. The parameters and weight coefficients in the surrogate model are solved by GA instead of traditional least square method. According to the geometrical feature of centrifugal impeller, a three-dimensional reconstruction method for the blade shape based on non-uniform rational B-spline(NURBS) is introduced. The numerical simulation is used to evaluate the aerodynamic performance of the optimal and initial impeller. The computational results show that the aerodynamic performance of impellers designed by both optimization schemes is improved to some extent. At the same time, the main reasons for the improvement in aerodynamic performance of the optimal impeller are revealed. For the optimal impellers, the isentropic efficiency and total pressure ratio are increased by about 1.0% and 3.0% respectively. Through comparison of two schemes applied to the centrifugal impeller optimization design, it is found that the computational performance of the second optimization scheme is superior to that of the first optimization scheme.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In