0

Full Content is available to subscribers

Subscribe/Learn More  >

Study on Aerodynamic Redesign of a High Pressure Ratio Centrifugal Compressor

[+] Author Affiliations
Chaolei Zhang, Qinghua Deng, Zhenping Feng

Xi’an Jiaotong University, Xi’an, China

Paper No. GT2010-23714, pp. 1027-1040; 14 pages
doi:10.1115/GT2010-23714
From:
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 7: Turbomachinery, Parts A, B, and C
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4402-1 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME

abstract

This paper describes the aerodynamic redesign and optimization of a typical single stage centrifugal compressor, in which the total pressure ratio was improved from the original 4.0 to final 5.0 with the restrictions of keeping the impeller tip diameter, the design rotational speed and the design mass flow rate unchanged. Firstly the backsweep angle and the outlet blade height of the impeller were adjusted and the vaned diffuser was redesigned. Then a sensitivity analysis of the aerodynamic performance correlated to the primary redesign centrifugal compressor stage with respect to the chosen redesign variables was conducted, according to the parameterized results of the impeller and the vaned diffuser. Secondly the impeller and the vaned diffuser were optimized respectively under the stage environment at the design operation condition to improve the stage isentropic efficiency by using a global optimization method which coupled Evolutionary Algorithm (EA) and Artificial Neural Network (ANN), provided by the commercial software NUMECA DESIGN-3D. Subsequently the detailed performance maps of the centrifugal compressor stage corresponding to the primary redesign configuration and the optimum configuration were presented by Computational Fluid Dynamics (CFD) simulation. Finally the flow fields correlated to the centrifugal compressor configurations before and after optimization at the design operation condition were also compared and analyzed in detail. As a result the design target was achieved after the primary redesign, as a 2.7% gain in stage efficiency and a 3.6% increase in stage pressure ratio were obtained when compared with the primary redesign configuration after optimization. Moreover, the aerodynamic performance of the optimum configuration at the off-design operation conditions was also improved.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In