Full Content is available to subscribers

Subscribe/Learn More  >

Ad-Hoc Boundary Conditions for CFD Analyses of Turbomachinery Problems With Strong Radial Flow Gradients at Farfield Boundaries

[+] Author Affiliations
M. Sergio Campobasso, Mohammad H. Baba-Ahmadi, Grant McLelland

University of Glasgow, Glasgow, UK

Paper No. GT2010-22176, pp. 587-599; 13 pages
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 7: Turbomachinery, Parts A, B, and C
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4402-1 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME


This paper reports on the improvements of flux enforcement and auxiliary state farfield boundary conditions for Euler and Navier-Stokes Computational Fluid Dynamics codes. The new conditions are based on 1D characteristic data and also on the introduction in the boundary conditions of certain numerical features of the numerical scheme used for the interior of the domain. In the presence of strong radial gradients of the flow field at the farfield boundaries, the new conditions perform significantly better than their conventional counterparts, in that they a) preserve the order of the space-discretization, and b) greatly reduce the error in estimating integral output. A coarse-grid CFD analysis of the compressible flow field in an annular duct for which an analytical solution is available yields a mass flow error of 62% or 2%, depending on whether the best or the worst farfield BC implementation is used. The presented BC enhancements can be applied to structured, unstructured, cell-centered and cell-vertex solvers.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In