Full Content is available to subscribers

Subscribe/Learn More  >

Effects of Vortex Generator Application on the Performance of a Compressor Cascade

[+] Author Affiliations
Alexander Hergt, Robert Meyer

German Aerospace Center (DLR), Cologne, Germany

Karl Engel

MTU Aero Engines GmbH, Munich, Germany

Paper No. GT2010-22464, pp. 223-235; 13 pages
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 7: Turbomachinery, Parts A, B, and C
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4402-1 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME


The performance of a compressor cascade is considerably influenced by secondary flow effects, like the cross flow on the end wall as well as the corner separation between the wall and the vane. An extensive experimental study of vortex generator application in a highly loaded compressor cascade was performed, in order to control these effects and enhance the aerodynamic performance. The results of the study will be used in future projects as a basis for parameterization in the design and optimization process for compressors in order to develop novel non-axisymmetric endwall as well as for blade modifications. The study includes the investigation of two vortex generator types, with different geometrical forms and their application on several positions in the compressor cascade. The investigation includes a detailed description of the secondary flow effects in the compressor cascade which is based on numerical and experimental results. This gives the basis for a specific approach of influencing the cascade flow by means of vortex generators. Depending on the vortex generator type and position, there is an impact on the end wall cross flow, the development of the horse shoe vortex at the leading edge of the vane and the extent of the corner separation achieved by improved mixing within the boundary layer. The experiments were carried out on a compressor cascade at a high-speed test facility at the DLR in Berlin at minimum loss (design point) and off-design of the cascade at Reynolds numbers up to Re = 0.6 × 106 (based on 40 mm chord) and Mach numbers up to M = 0.7. The cascade consisted of five vanes and their profiles represent the cut near hub of the stator vanes of the single stage axial compressor of the Technical University of Darmstadt. At the cascade design point the total pressure losses could be reduced by up to 9 percent with vortex generator configuration whereas the static pressure rise was nearly unaffected. Furthermore, the cascade deflection could be influenced considerably by vortex generators and also an enhancement of the cascade stall range could be achieved. All these results will be presented and discussed with respect to secondary flow mechanisms.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In