0

Full Content is available to subscribers

Subscribe/Learn More  >

CFD Analysis of Effects of Damage Due to Bird Strike on Fan Performance

[+] Author Affiliations
Baizura Bohari, Abdulnaser Sayma

University of Sussex, Brighton, UK

Paper No. GT2010-22365, pp. 173-181; 9 pages
doi:10.1115/GT2010-22365
From:
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 7: Turbomachinery, Parts A, B, and C
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4402-1 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME

abstract

Bird ingestion has been a hazard that affects the structural integrity and survivability of turbofan engines. It can result in deformation of one or more fan blades, in which case, the engine is likely to surge and not recover. Numerical studies and simulations of bird strikes have become essential to optimize the design of engine components simultaneously to increase the engine capabilities for acceptable damage tolerance. Good understanding of these phenomena and the implications on the behaviour of the flow field with respect to the damage affecting the fan blades are usually investigated using computational techniques and/or experimental methods. The purpose of this paper is to present a Computational Fluid Dynamics (CFD) method for the analysis of the aerodynamic behaviour of an aero-engine fan affected by a bird strike. NASA rotor 67 was used as a test case because of the availability of experimental data that can be used to calibrate the model for the undamaged fan. The undamaged fan characteristic was mapped using a modification to the methodology developed by Sayma (2007). In this method a downstream variable throttle is added which allows changing the operating point on the speed characteristic without having to change downstream boundary conditions. This approach allows for changes in fan operating point to come out of the calculation as opposed to those dictated by the downstream static pressure boundary conditions used in typical computations. The methodology is automated allowing for a sweep along a speed characteristic or along a working line in one calculation in the same way as a rig test is conducted. Agreement with experimental data when available was excellent. This provided the base line for the undamaged blades. A damaged blade was inserted among undamaged blades in the fan assembly and the fan characteristic was mapped for a range of rotational speeds. Two different degrees of damage were analysed in an attempt to establish a correlation between the extent of the damage and the locus of the stall boundary. It was found that small increments on the damage lead to significant reduction in stall margin particularly at higher rotational speeds.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In