0

Full Content is available to subscribers

Subscribe/Learn More  >

Assessment and Optimization of the Aerodynamic and Acoustic Characteristics of a Counter Rotating Open Rotor

[+] Author Affiliations
R. Schnell, C. Voss, E. Nicke

German Aerospace Center (DLR), Koeln, Germany

J. Yin

German Aerospace Center (DLR), Braunschweig, Germany

Paper No. GT2010-22076, pp. 11-25; 15 pages
doi:10.1115/GT2010-22076
From:
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 7: Turbomachinery, Parts A, B, and C
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4402-1 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME

abstract

The present study demonstrates the aerodynamic and acoustic optimization potential of a counter rotating open rotor. The objective was to maximize the propeller efficiency at top-of-climb conditions and to minimize the noise emission at takeoff while fulfilling the given thrust specifications at two operating conditions (Takeoff and Top of Climb) considered. Both objectives were successfully met by applying an efficient multi-objective optimization procedure in combination with a 3D RANS method. The acoustic evaluation was carried out with a coupled U-RANS and an analytic far field prediction method based on an integral Ffowcs-Williams Hawkings approach. This first part of the paper deals with the application of DLR’s CFD method TRACE to counter rotating open rotors. This study features the choice and placement of boundary conditions, resolution requirements and a corresponding meshing strategy. The aerodynamic performance in terms of thrust, torque and efficiency was evaluated based on steady state calculations with a mixing plane placed in between both rotors, which allowed for an efficient and reliable evaluation of the performance, in particular within the automatic optimization. The aerodynamic optimization was carried by the application of AutoOpti, a multi-objective optimization procedure based on an evolutionary algorithm which also was developed at the Institute of propulsion technology at DLR. The optimization presented in this paper features more than 1600 converged 3D steady-state CFD simulations at two operating conditions, Takeoff and Top of Climb respectively. In order to accelerate the optimization process a surrogate model based on a Kriging interpolation on the response surfaces was introduced. The main constrains and regions of interest during the optimization where a given power split between the rotors at takeoff, retaining an axial outflow at the aft rotor exit at top of climb and fulfilling the given thrust specifications at both operating conditions. Two objectives were defined: One was to maximize the (propeller) efficiency at top of climb conditions. The other objective was an acoustic criteria aiming at decreasing the rotor/rotor interaction noise at takeoff by smoothening the front rotor wakes. Approximately 100 geometric parameters were set free during the optimization to allow for a flexible definition of the 3D blade geometry in terms of rotor sweep, aft rotor clipping, hub contour as well as a flexible definition of different 2D profiles at different radial locations. The acoustic evaluation was carried out based on unsteady 3D-RANS computations with the same CFD method (TRACE) involving an efficient single-passage phase-lag approach. These unsteady results were coupled with the integral Ffowcs-Williams Hawkings method APSIM via a permeable control surface covering both rotors. The far field directivities and spectra for a linear microphone array were evaluated, here mainly at the takeoff certification point. This (still time consuming) acoustic evaluation was carried out after the automatic optimization for a few of the most promising individuals only and results will be presented in comparison with the baseline configuration. This detailed acoustic evaluation also allowed for an assessment of the effectiveness of the acoustic cost function as introduced within the automatic optimization.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In