Full Content is available to subscribers

Subscribe/Learn More  >

Investigation of Impeller Strength for a Cryogenic Liquid Turbine

[+] Author Affiliations
Yan Ren, Jinju Sun, Rongye Zheng, Peng Song, Ke Wang

Xi’an Jiaotong University, Xi’an, China

Paper No. GT2010-23125, pp. 1333-1343; 11 pages
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 6: Structures and Dynamics, Parts A and B
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4401-4 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME


A single stage cryogenic liquid turbine is designed for a large-scale internal compression air-separation unit to replace the Joule-Thompson valve and recover energy from the liquefied air during throttling process. It includes a 3-dimensional impeller, variable geometry nozzle, and asymmetrical volute. Strength evaluation of such a liquid turbine is both essential and complicated, which involves a proper evaluation of stress acting on the components and mechanical property of the chosen materials at low temperature. For metals under low temperatures, brittle fracture of the metal may occur prior to fatigue damage. A comprehensive consideration of low-temperature mechanical properties of materials and mechanical loads (due to hydrodynamic force and centrifugal force) acting on the components is of particular importance. Aluminum alloy 2031 is used for the turbine impeller and its mechanical properties under low temperatures are analyzed. To evaluate the stress acting on the components, numerical investigation using 3-D incompressible Navier-Stokes Equation together with k-epsilon turbulence model and mixing plane approach at rotator-stator interface are carried out at design and off-design flow with different nozzle-vane settings. The obtained pressure force is transformed into hydrodynamic load acting on the solid surface by means of fluid-solid interaction technology, and then used in the FEM (Finite Element Method) structure analysis together with the centrifugal force. Stress distribution of the component is obtained and deformation of the component analyzed. Evaluation of impeller strength is conducted for the cryogenic liquid turbine by combining the foregoing two aspects, and a use of alloy 2031 for the turbine expander is validated.

Copyright © 2010 by ASME
Topics: Impellers , Turbines



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In