0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Modelling of Fluid-Structure Interaction in a Turbine Stage for 3D Viscous Flow in Nominal and Off- Design Regimes

[+] Author Affiliations
Romuald Rzadkowski

Polish Academy of Sciences, Gdansk, Poland

Vitaly Gnesin, Lubov Kolodyazhnaya

Ukrainian National Academy of Sciences, Kharkov, Ukraine

Paper No. GT2010-23779, pp. 1299-1307; 9 pages
doi:10.1115/GT2010-23779
From:
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 6: Structures and Dynamics, Parts A and B
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4401-4 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME

abstract

In recent years there have been major developments in turbomachinery aeroelasticity methods. There are now greater possibilities to predict blade vibrations arising from self-excitation or inlet flow distortion. This is not only important with regard to aircraft compressor and fan blade rows, but also in the case of the last stages of steam and gas turbines working in highly loaded off-design conditions. In order to predict the unsteady pressure loads and aeroelastic behaviour of blades (including the computation of shock waves, shock/boundary layer interaction and boundary layer separation), complete Reynolds-averaged Navier-Stokes (RANS) equations are used in modelling complex and off-design cases of turbomachinery flows. In this paper the 3D RANS solver, including a modified Baldwin and Lomax algebraic eddy viscous turbulence model, is presented to calculate unsteady viscous flow through the turbine stage, while taking into account the blade oscillations but without the separating of outer excitation and unsteady effects caused by blade motion. The numerical method uses the second order by time and coordinates an explicit finite-volume Godunov’s type difference scheme and a moving H-O structured grid. The structure analysis uses the modal approach and a 3D finite element model of blade. To validate the numerical viscous code, the numerical calculation results were compared with the 11th Standard Configuration measurements. Presented here are the numerical analysis results for the aeroelastic behaviour of a steam turbine last stage with 760 mm rotor blades in a nominal and an off-design regime.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In