Full Content is available to subscribers

Subscribe/Learn More  >

Dynamic Analysis of Fretting-Wear in Joint Interface by a Multiscale Harmonic Balance Method Coupled With Explicit or Implicit Integration Schemes

[+] Author Affiliations
Loïc Salles

Moscow State Technical University named after Bauman, Moscow, Russia; École Centrale de Lyon, Ecully; Snecma - SAFRAN Group, Moissy-Cramayel, France

Alexander M. Gouskov

Moscow State Technical University named after Bauman, Moscow, Russia

Laurent Blanc, Fabrice Thouverez

École Centrale de Lyon, Ecully, France

Pierrick Jean

Snecma - SAFRAN Group, Moissy-Cramayel, France

Paper No. GT2010-23264, pp. 1003-1013; 11 pages
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 6: Structures and Dynamics, Parts A and B
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4401-4 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME


Assembled bladed disks have many contact interfaces (blade-disk joint, blade shrouds, friction damper, etc). Because of relative displacements at these interfaces, fretting-wear can occur, which shortens the life expectancy of the structure. Moreover, vibrations that occur in bladed-disks can increase this fretting-wear phenomenon. Two previous papers in Turboexpo have introduced a numerical method based on the Dynamical Lagrangian Frequency Time algorithm (DLFT) to calculate worn geometry, especially wear of bladed-disks’ dovetail roots. Numerical investigations have illustrated the performances of this method and shown the coupling between dynamical and tribological phenomena. The basic idea of the DLFT-with-wear method is to separate time in two scales, slow scale for tribological phenomena and fast scale for dynamics. In the present paper, implicit and explicit integration schemes on the slow time scale are compared. An ad hoc prediction-correction method is used in both methods to accelerate the convergence of the non-linear solver. Numerical experiments on bladed-disk show that the implicit scheme is more appropriate to deal with fretting-wear under dynamical loading.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In