0

Full Content is available to subscribers

Subscribe/Learn More  >

Non-Linear Forced Response Analysis of Mistuned Bladed Disk Assemblies

[+] Author Affiliations
M. Ersin Yümer

Tübitak-Sage, Ankara, Turkey

Ender Ciğeroğlu, H. Nevzat Özgüven

Middle East Technical University, Ankara, Turkey

Paper No. GT2010-22128, pp. 757-766; 10 pages
doi:10.1115/GT2010-22128
From:
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 6: Structures and Dynamics, Parts A and B
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4401-4 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME

abstract

Forced response analysis of bladed disk assemblies plays a crucial role in rotor blade design, and therefore has been investigated by researchers extensively. However, due to lack of computation power, several studies in the literature utilize either linear mistuned models which are short of capturing nonlinear effects, or non-linear tuned models which do not catch the effects of mistuning. Studying the combined effect of the two, namely non-linearity and mistuning, is relatively recent and generally conducted with methods whose convergence and accuracy depend highly on the number of degrees of freedom related with the non-linear elements. In this paper, a new approach is proposed to predict forced response of frictionally damped mistuned bladed disk assemblies in modal domain. A friction element, which enables normal load variation and separation of the contact interface, is utilized to determine the non-linear contact forces in three-dimensional space, and harmonic balance method is used to obtain a relationship between the non-linear contact forces and the relative motion. As mistuning phenomenon destroys the cyclic symmetry, modeling the whole assembly rather than a sector of it is necessary, which increases the number of non-linear elements required considerably. In the proposed approach, the analysis is carried out in modal domain where the differential equations of motions are converted to a set of non-linear algebraic equations using harmonic balance method and modal superposition technique. Thus, the number of non-linear equations to be solved is proportional to the number of modes retained, rather than the number of degrees of freedom related with the nonlinear elements. Therefore, the proposed approach can be applied to realistic bladed disk models without increasing the number of non-linear equations. Moreover, to accomplish this it is not required to use a reduced order model in the method suggested. Two case studies are presented to illustrate the implementation of the method: a lumped parameter bladed disk model and an academic bladed disk model with shrouds.

Copyright © 2010 by ASME
Topics: Disks

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In