0

Full Content is available to subscribers

Subscribe/Learn More  >

Probabilistic Engine Maintenance Modeling for Varying Environmental and Operating Conditions

[+] Author Affiliations
Matthias Müller, Stephan Staudacher

University of Stuttgart, Stuttgart, Germany

Winfried-Hagen Friedl, René Köhler, Matthias Weißschuh

Rolls-Royce Deutschland Ltd. & Co. KG, Blankenfelde-Mahlow, Germany

Paper No. GT2010-22548, pp. 629-638; 10 pages
doi:10.1115/GT2010-22548
From:
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 6: Structures and Dynamics, Parts A and B
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4401-4 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by Rolls-Royce Deutschland Ltd. & Co KG

abstract

The maintenance and reliability of aircraft engines is strongly influenced by the environmental and operating conditions they are subjected to in service. A probabilistic tool has been developed to predict shop visit arisings and respective maintenance workscope that depends on these factors. The tool contains a performance model of the engine and a number of physics-based damage mechanisms (at piece part level). The performance model includes variation of performance relevant parameters due to production scatter and delivers the conditions to determine the deterioration of the individual parts. Shop visit maintenance is modeled as a result of limitations to engine operation, e.g. reaching TGT limit, or mechanical deterioration. The influence of maintenance actions on engine performance is determined on component basis. The maintenance strategy can consist of proactive and reactive maintenance elements. The decision of repair or replacement of any single part is implemented through a sum of different logic rules in the model. The loading capacity scatter depends on the engine type and is operator independent. It is represented via data-driven distribution functions, in which the probabilities of failure, repair and replacement for each part are specified depending on the number of reference flight cycles. The loading variation is considered through a physics-based cycle weighting. The developed tool runs a Monte Carlo simulation in which a fleet of engines is modeled through their respective lifetime of maintenance and performance deterioration. Using an example it is shown that the model can describe the effects of varying environmental and operating conditions on part damage, and therefore engine maintenance cost and reliability.

Copyright © 2010 by Rolls-Royce Deutschland Ltd. & Co KG

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In