Full Content is available to subscribers

Subscribe/Learn More  >

Failure Investigation of the 69 MW Gas Turbine of Combined Cycle Unit

[+] Author Affiliations
Zdzislaw Mazur, Alejandro Hernández-Rossette, Jesús Porcayo-Calderón

Instituto de Investigaciones Electricas, Cuernavaca, MOR, Mexico

Paper No. GT2010-22262, pp. 481-489; 9 pages
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 6: Structures and Dynamics, Parts A and B
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4401-4 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME


A compressor blade failure was experienced at the 69 MW gas turbine of a combined cycle (C.C.) unit after four years operation since the last overhaul (January 2005). The unit accumulated 27,000 service hours and 97 start-ups since the last overhaul. This unit consists of four gas turbine stages and 19 compressor stages and operates at 3600 rpm. In 2006, the unit was equipped with a fogging system at the compressor air inlet duct to increment unit power output during high ambient temperature days (hot days). These fog water nozzles were installed upstream of the compressor inlet air filter without any water filter/catcher before the water spray nozzles. Three unit failure events occurred at small periods, which caused forced outage. The first failure occurred in December 2008, a second event in March 2009 and the third event in May 2009. Visual examination carried out after the first failure event indicated that the compressor vanes (diaphragms) had cracks in their airfoils initiating at blade tenons welded to the diaphragm outer shroud at stages 3, 8, 9, 10 and 11. Also, many stationary vanes and moving blades at each stage of the compressor showed foreign object damage (FOD) and fractures at the airfoil. Visual examination performed for the second failure event after 60 unit operation hours indicated that many compressor vanes (diaphragms) and moving blades had FOD at the airfoil. This was attributed to fractures of the fogging system water spray nozzle, which were then induced to the compressor flow path channel at high velocity causing the above-mentioned damage. Visual examination completed upon the third failure event after two unit startup attempts indicated damage of compressor stationary vanes and moving blades principally at stages 12 to 16, and also stages 17 to 19. The damage consisted of airfoil fracture in stationary vanes and moving blades, FOD, moving blade tip rubbing, and bending of stationary vanes, moving blades and diaphragm shrouds. A laboratory evaluation of stationary vane tenon fracture indicated a high cycle fatigue (HCF) failure mechanism, and crack initiation was accelerated by corrosion picks on blade surfaces due to high humidity air generated by the fogging system. Stationary vane damage was caused by a rotating stall phenomenon, which generates vibratory stresses in stationary vanes and moving blades during unit start-ups. During the third failure event, stationary vane HCF damage was highly accelerated due to pre-existent partial fractures in tenons generated during previous failure events, which had not been detected by non-destructive tests. Stationary vane and moving blade failure was also influenced by high tenon brittleness in stationary vanes and moving blades generated during manufacture by welding (diaphragms) and repair welding (moving blades) without adequate post-weld heat treatment (stress relieving). A compressor stationary vane and moving blade failure evaluation was completed. This investigation included cracked blade metallographic analysis, unit operation parameter analysis, history-of-events analysis, and crack initiation and propagation analysis. This paper provides an overview of the compressor failure investigation, which led to identification of the HCF failure mechanism generated by rotating stall during unit start-ups, highly accelerated by corrosion generated by the fogging system and influenced by high stationary vane and moving blade brittleness as the primary contribution to the observed failure.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In