Full Content is available to subscribers

Subscribe/Learn More  >

Modal Frequency Response of a Four-Pad Tilting Pad Bearing With Spherical Pivots, Finite Pivot Stiffness and Different Pad Preloads

[+] Author Affiliations
Timothy W. Dimond, Amir A. Younan, Paul E. Allaire

University of Virginia, Charlottesville, VA

John C. Nicholas

Lufkin - Rotating Machinery Technology, Wellsville, NY

Paper No. GT2010-23609, pp. 431-442; 12 pages
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 6: Structures and Dynamics, Parts A and B
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4401-4 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME


Tilting pad journal bearings (TPJBs) provide radial support for rotors in high-speed machinery. Since the tilting pads cannot support a moment about the pivot, self-excited cross-coupled forces due to fluid-structure interactions are greatly reduced or eliminated. However, the rotation of the tilting pads about the pivots introduces additional degrees of freedom into the system. When the flexibility of the pivot results in pivot stiffness that is comparable to the equivalent stiffness of the oil film, then pad translations as well as pad rotations have to be considered in the overall bearing frequency response. There is significant disagreement in the literature over the nature of the frequency response of TPJBs due to non-synchronous rotor perturbations. In this paper, a bearing model that explicitly considers pad translations and pad rotations is presented. This model is transformed to modal coordinates using state-space analysis to determine the natural frequencies and damping ratios for a four-pad tilting pad bearing. Experimental static and dynamic results were previously reported in the literature for the subject bearing. The bearing characteristics as tested are considered using a thermoelastohydrodynamic (TEHD) model. The subject bearing was reported as having an elliptical bearing bore and varying pad clearances for loaded and unloaded pads during the test. The TEHD analysis assumes a circular bearing bore, so the average bearing clearance was considered. Because of the ellipticity of the bearing bore, each pad has its own effective preload, which was considered in the analysis. The unloaded top pads have a leading edge taper. The loaded bottom pads have finned backs and secondary cooling oil flow. The bearing pad cooling features are considered by modeling equivalent convective coefficients for each pad back. The calculated bearing full stiffness and damping coefficients are also reduced non-synchronously to the eight stiffness and damping coefficients typically used in rotordynamic analyses and are expressed as bearing complex impedances referenced to shaft motion. Results of the modal analysis are compared to a two degree-of-freedom second-order model obtained via a frequency-domain system identification procedure. Theoretical calculations are compared to previously published experimental results for a four-pad tilting pad bearing. Comparisons to the previously published static and dynamic bearing characteristics are considered for model validation. Differences in natural frequencies and damping ratios resulting from the various models are compared, and the implications for rotordynamic analyses are considered.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In