0

Full Content is available to subscribers

Subscribe/Learn More  >

Thermal Management and Rotordynamic Performance of a Hot Rotor-Gas Foil Bearings System: Part 1—Measurements

[+] Author Affiliations
Luis San Andrés, Keun Ryu

Texas A&M University, College Station, TX

Tae Ho Kim

Korea Institute of Science and Technology, Seoul, Korea

Paper No. GT2010-22981, pp. 253-262; 10 pages
doi:10.1115/GT2010-22981
From:
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 6: Structures and Dynamics, Parts A and B
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4401-4 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME

abstract

Implementation of gas foil bearings (GFBs) into micro gas turbines requires careful thermal management with accurate measurements verifying model predictions. This two-part paper presents test data and analytical results for a test rotor and GFB system operating hot (157°C max. rotor OD temperature). Part 1 details the test rig and measurements of bearing temperatures and rotor dynamic motions obtained in a hollow rotor supported on a pair of 2nd generation GFBs, each consisting of a single top foil (38.14 mm ID) uncoated for high temperature operation, and five bump strip support layers. An electric cartridge (max. 360°C) loosely installed inside the rotor (1.065 kg, 38.07 mm OD, and 4.8 mm thick) is a heat source warming the rotor-bearing system. While coasting down from 30 krpm to rest, large elapsed times (50∼70 s) demonstrate rotor airborne operation, near friction free; and, while traversing the system critical speed at ∼13 krpm, the rotor peak motion amplitude decreases as the system temperature increases. In tests conducted at a fixed rotor speed of 30 krpm, while the shaft heats, a cooling gas stream of increasing strength is set to manage the temperatures in the bearings and rotor. The effect of the cooling flow, if turbulent in character, is most distinctive at the highest heater temperature. For operation at a lower heater temperature condition, however, the cooling flow stream demonstrates a very limited effectiveness. The measurements demonstrate the reliable performance of the rotor-GFB system when operating hot. The test results, along with full disclosure on the materials and geometry of the test bearings and rotor, serve to benchmark a predictive tool. A companion paper (Part 2) compares the measured bearing temperatures and the rotor response amplitudes to predictions.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In