0

Full Content is available to subscribers

Subscribe/Learn More  >

Identification of Numerical Squeeze-Film Damper Models for Efficient Aeroengine Vibration Analysis

[+] Author Affiliations
Keir Groves, Philip Bonello

The University of Manchester, Manchester, UK

Paper No. GT2010-22393, pp. 101-111; 11 pages
doi:10.1115/GT2010-22393
From:
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 6: Structures and Dynamics, Parts A and B
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4401-4 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME

abstract

The accuracy of the dynamic analysis of rotor systems incorporating squeeze film damper (SFD) bearings is typically limited by a trade-off between the capabilities and the computational cost of the bearing model used. Simplified solutions to the Reynolds equation such as short and long bearing models, and their variants, while providing rapid solution, significantly restrict the general applicability of the solutions. Numerical solutions to the Reynolds equation allow its solution in full form, with a variety of boundary conditions. Solving the Reynolds equation numerically imposes a significant computational cost on the dynamical analysis, rendering it computationally prohibitive for industrial applications. To surmount this problem, the present paper develops the use of Chebyshev polynomial fits to mimic the hydrodynamic relationship obtained through the finite difference (FD) solution of the incompressible Reynolds equation. In order to overcome limitations of previous interpolation approaches, the proposed method has three features: (i) a reduced number of input variables with a clearly defined finite range; (ii) interpolation of the pressure rather than the bearing force; (iii) division of the pressure function into its static and dynamic parts. These manipulations allow for efficient and accurate identification in the presence of cavitation and the presence of the groove, feed-ports and end-plate seals. The ability of Chebyshev polynomials to rapidly reproduce results obtained using FD routines is demonstrated. The advanced bearing models developed are proven to give more accurate results than alternative analytical bearing models when compared to experimental results.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In