0

Full Content is available to subscribers

Subscribe/Learn More  >

Squealer Tip Heat Transfer With Film Cooling

[+] Author Affiliations
Sumanta Acharya, Gregory Kramer, Louis Moreaux

Louisiana State University, Baton Rouge, LA

Chiyuki Nakamata

IHI Corporation, Tokyo, Japan

Paper No. GT2010-23688, pp. 1869-1877; 9 pages
doi:10.1115/GT2010-23688
From:
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 4: Heat Transfer, Parts A and B
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4399-4 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME

abstract

Heat transfer coefficients and film cooling effectiveness values were obtained numerically on a film cooled 2-D gas turbine blade tip model featuring a cutback squealer. In addition, pressure distributions were obtained at 50% and 98% spans. The calculations were performed for a single blade with periodic boundary conditions imposed along the two mid-passage boundaries formed by the adjacent blades. The calculations were performed with the realizable k-ε turbulence model and non-equilibrium wall function using 1.1 million elements. The numerical results are obtained for 4 blowing ratios and for Reynolds number based on axial chord and inlet velocity of 75,000. Limited experimental measurements of the blade pressure distributions and the uncooled tip heat transfer coefficients were performed for validation of the numerical results. The experiments were conducted in a six-blade low-speed wind tunnel cascade at a Reynolds number of 75,000. The heat transfer experiment involved a transient infrared thermography technique. Experimental heat transfer coefficients were extracted using a transient technique. The predicted pressure distributions agree very well with the measurements while the heat transfer coefficient predictions show qualitative agreement. From the numerical results, it can be seen that as the blowing ratio is increased, larger regions of film cooling effectiveness were seen with higher effectiveness values between the camber line and suction side. Heat transfer coefficients were largest near the leading edge for all cases.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In