Full Content is available to subscribers

Subscribe/Learn More  >

Effects of Vane/Blade Relative Positions and Showerhead Film Cooling on a Stationary Blade: Heat Transfer

[+] Author Affiliations
Dong Hyun Lee, Kyung Min Kim, Hyung Hee Cho

Yonsei University, Seoul, Korea

Dong-Ho Rhee

Korea Aerospace Research Institute, Daejeon, Korea

Paper No. GT2010-23321, pp. 1785-1794; 10 pages
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 4: Heat Transfer, Parts A and B
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4399-4 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME


The present study investigates the effects of relative position on heat transfer distributions of a showerhead film-cooled stationary rotor blade. Detailed heat/mass transfer coefficients were measured using the naphthalene sublimation method. A low-speed wind tunnel was used, with a single annular turbine stage consisting of sixteen guide vanes and blades. The axial chord length of the test blade was 136 mm. The inlet and exit angles of the test blade were 56.4° and −62.6°, respectively, which produced a turning angle of 119.0°. Three rows of film cooling holes were drilled in the leading edge region of the blade. Each row had 10 circular cooling holes along the spanwise direction, and the diameter of each cooling hole was 1.2 mm. Detailed heat transfer coefficients were measured at two different guide vane and rotor blade relative positions, while changing the blowing rate (M) from 1.0 to 2.0. The inlet Reynolds number was fixed at 1.3×105 based on the blade axial chord length. As the blowing rate increased, overall heat transfer rates increased, and the lower peaks formed on the pressure side by the separation bubble were reduced, and disappeared at M = 2.0. The effects of vane/blade relative position were significant because the incoming flow condition was changed. However, the spanwise average Sherwood number became similar as the blowing rate increased.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In