0

Full Content is available to subscribers

Subscribe/Learn More  >

Heat Transfer and Effectiveness on the Film Cooled Tip and Inner Rim Surfaces of a Turbine Blade

[+] Author Affiliations
Jun Su Park, Dong Hyun Lee, Hyung Hee Cho

Yonsei University, Seoul, Korea

Dong-Ho Rhee

Korea Aerospace Research Institute, Daejeon, Korea

Shin-Hyung Kang

Seoul National University, Seoul, Korea

Paper No. GT2010-23203, pp. 1751-1761; 11 pages
doi:10.1115/GT2010-23203
From:
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 4: Heat Transfer, Parts A and B
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4399-4 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME

abstract

Detailed heat/mass transfer coefficients and film-cooling effectiveness were measured on the tip and inner rim surfaces of a rotor blade with a squealer rim. The blade was a two-dimensional version of a modern first-stage gas turbine rotor blade with a squealer rim. The experimental apparatus was equipped with a linear cascade of three blades, the axial chord length (Cx ) of which was 237 mm with a turning angle of 126°. The mainstream Reynolds number based on the axial chord was 1.5×105 . The turbulence intensity level at the cascade inlet was approximately 12%. Measurements were made at three different rim heights (H) of about 3%, 6%, and 9% of the axial chord length. The tip clearance (C) ranges were 1–3% of the axial chord length. Also, three different types of blade tip surfaces were equipped with a single row of film-cooling holes along the camber line, near the pressure and the suction side rim. In particular, a coolant was injected at an incline of 45° from near the suction side film cooling holes. The film cooling experiments were done with a fixed tip clearance and rim height at 1% and 6% of the axial chord length. The blowing rate was fixed at 1.5. High heat transfer rates were observed near the leading edge on the tip surface in some cases, due to the reattachment of tip leakage flow. The peak values moved toward the suction-side edge, and the magnitude and area of high heat transfer increased near the leading edge as the tip clearance increased. The heat transfer decreased on the tip surface with increases in the rim height. In the film-cooling cases, the high heat transfer and film-cooling effectiveness region appeared near the film-cooling holes.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In