Full Content is available to subscribers

Subscribe/Learn More  >

Film Cooling Effect of Rotor-Stator Purge Flow on Endwall Heat/Mass Transfer

[+] Author Affiliations
M. Papa, V. Srinivasan, R. J. Goldstein

University of Minnesota, Minneapolis, MN

Paper No. GT2010-23178, pp. 1729-1738; 10 pages
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 4: Heat Transfer, Parts A and B
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4399-4 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME


Mass transfer measurements on the endwall and blade suction surfaces are performed in a five-blade linear cascade with a high-performance rotor blade profile. The effects of purge flow from the wheelspace cavity entering the hot gas path are simulated by injecting air through a slot upstream of the blade row at 45° to the endwall, for Reynolds number of 6×105 based on blade true chord and cascade exit velocity, and blowing ratios of 0.5, 1 and 1.5. Detailed maps of cooling effectiveness on the passage endwall and blade suction surface are generated for the cases of injection of naphthalene-free and naphthalene-saturated air. Oil-dot visualization indicates that with injection, a recirculation region is set up upstream of the leading edge, and the growth of the passage vortex is altered. The coolant exiting from the slot is drawn to the suction side of the blade and is pushed up along the suction surface of the blade by the secondary flow. For blowing ratios of 0.5 and 1.0, only a little coolant reaches the pressure side in the aft part of the passage. However, at a blowing ratio of 1.5, there is a dramatic change in the flow structure. Both the oil dot visualization and the cooling effectiveness maps indicate that at this blowing ratio, the coolant exiting the slot has sufficient momentum to closely follow the blade profile, and is not significantly entrained into the passage vortex. As a result, high cooling effectiveness values are obtained at the pressure side of the endwall, well into the mid-chord and aft portions of the blade passage.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In