0

Full Content is available to subscribers

Subscribe/Learn More  >

The Experimental and Numerical Research for Linear Cascade Film Cooling With Different Hole Shapes

[+] Author Affiliations
Yi Lu, Yinyi Hong, Zhirong Lin, Xin Yuan

Tsinghua University, Beijing, China

Paper No. GT2010-23030, pp. 1667-1676; 10 pages
doi:10.1115/GT2010-23030
From:
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 4: Heat Transfer, Parts A and B
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4399-4 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME

abstract

Detailed film cooling effectiveness distributions were experimentally obtained on a turbine vane platform within a linear cascade. Testing was done in a large scale five-vane cascade with low freestream Renolds number condition 634,000 based on the axial chord length and the exit velocity. The detailed film-cooling effectiveness distributions on the platform were obtained using pressure sensitive paint technique. Two film-cooling hole configurations, cylindrical and fan-shaped, were used to cool the vane surface with two rows on pressure side, two rows on suction side and three rows on leading edge. For cylindrical holes, the blowing ratio of the coolant through the discrete cooling holes on pressure side and suction side ranged from 0.3 to 1.5 (based on the inlet mainstream velocity) while the blowing ratio ranging from 0.15 to 1.5 on leading edge; for fan-shaped holes, the four blowing ratios were 0.5, 1.0, 1.5 and 2.0. Results showed that average film-cooling effectiveness decreased with increasing blowing rate for the cylindrical holes, while the fan-shaped passage showed increased film-cooling effectiveness with increasing blowing ratio, indicating the fan-shaped cooling holes helped to improve film-cooling effectiveness by reducing overall jet liftoff. Fan-shaped holes improved average film-cooling effectiveness by 93.2%, 287.6% and 489.6% on pressure side, −4.1%, 27.9% and 78.2% on suction side over cylindrical holes at the blowing ratio of 0.5, 1.0 and 1.5 respectively. Numerical results were used to analyze the details of the flow and heat transfer on the cooling area with two turbulence models. Results demonstrated that tendency of the film cooling effectiveness distribution of numerical calculation and experimental measurement was generally consistent at different blowing ratio.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In