0

Full Content is available to subscribers

Subscribe/Learn More  >

Endwall Effusion Cooling System Behaviour Within a High-Pressure Turbine Cascade: Part 1—Aerodynamic Measurements

[+] Author Affiliations
Marco Sacchi, Daniele Simoni, Marina Ubaldi, Pietro Zunino

Università di Genova, Genova, Italy

Stefano Zecchi

Avio R&D, Rivalta, TO, Italy

Paper No. GT2010-22931, pp. 1585-1594; 10 pages
doi:10.1115/GT2010-22931
From:
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 4: Heat Transfer, Parts A and B
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4399-4 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME

abstract

The secondary flow field in a large-scale high-pressure turbine cascade with micro-holed endwall cooling has been investigated at the Genova Laboratory of Aerodynamics and Turbomachinery in cooperation with Avio S.p.A in the framework of the European Project AITEB-2. The experimental investigation has been performed for the baseline configuration, with a smooth solid endwall installed, and for the cooled configuration with a micro-holed endwall providing micro-jets ejection from the wall. Two different cooling flow rates were investigated and the experimental results are reported in the paper. Different measurement techniques have been employed to analyze the secondary flow field along the channel and in a downstream tangential plane. Particle Image Velocimetry has been utilized to quantify the blade-to-blade velocity components in a plane located close to the endwall and in the midspan plane. Hot-wire measurements have been performed in a tangential plane downstream of the blade trailing edges in order to survey the micro-jets effects on the secondary flows behavior. The total pressure distributions, for the different blowing conditions, have been measured in the downstream tangential plane by means of a Kiel pneumatic probe. The results, represented in color plots of velocity, pressure loss coefficient and turbulent kinetic energy distributions, allow the identification of the endwall effusion cooling effects on location and strength of the secondary vortical structures. The thermal investigation of the effusion system is discussed in Part 2 of the paper.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In