0

Full Content is available to subscribers

Subscribe/Learn More  >

A Model for Cylindrical Hole Film Cooling: Part II—Model Formulation, Implementation and Results

[+] Author Affiliations
Tilman auf dem Kampe, Stefan Völker

Siemens AG, Energy Sector, Mülheim an der Ruhr, Germany

Paper No. GT2010-22788, pp. 1551-1560; 10 pages
doi:10.1115/GT2010-22788
From:
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 4: Heat Transfer, Parts A and B
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4399-4 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME

abstract

A model to simulate flows ejected from cylindrical film cooling holes in 3D-CFD without meshing the cooling hole geometry has been developed. It uses a correlation-based prediction of the complete three-dimensional flow field in the vicinity of a film hole exit based on characteristic film cooling parameters that is presented in part I of this two-part paper [1]. The model describes the film-jet in terms of its shape and the distribution of temperature and velocity components within the film-jet body. For example, the characteristic counter-rotating vortex pair in the film-jet is modeled. Adding source terms to the transport equations for mass, momentum and energy locally, the correlation-based prediction of the film-jet flow field is imposed onto a 3D-CFD simulation. Source terms are specified in the vicinity of a film hole exit, within a region representative of the volume occupied by the film jet. Each node within this source volume is treated individually in order to model the complex flow structure of the film-jet. The model has successfully been implemented in a commercial CFD code. Its general applicability has been tested and proven. The model’s predictive capability is compared to detailed CFD calculations and experimental investigations. A grid requirement study has been conducted, showing that the film cooling model delivers reasonable predictions of the surface temperature distributions downstream of the ejection location using relatively coarse grids. A minimum grid resolution requirement has been identified.

Copyright © 2010 by ASME
Topics: Cooling

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In