Full Content is available to subscribers

Subscribe/Learn More  >

Influence of Coolant Density on Turbine Blade Film-Cooling Using Pressure Sensitive Paint Technique

[+] Author Affiliations
Diganta P. Narzary, Kuo-Chun Liu, Akhilesh P. Rallabandi, Je-Chin Han

Texas A&M University, College Station, TX

Paper No. GT2010-22781, pp. 1529-1540; 12 pages
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 4: Heat Transfer, Parts A and B
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4399-4 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME


Adiabatic film-cooling effectiveness is examined on a high pressure turbine blade by varying three critical engine parameters, viz., coolant blowing ratio, coolant-to-mainstream density ratio and freestream turbulence intensity. Three average coolant blowing ratios (BR = 1.2, 1.7, and 2.2 on the pressure side and BR = 1.1, 1.4, and 1.8 on the suction side), three average coolant density ratios (DR = 1.0, 1.5, and 2.5), and two average freestream turbulence intensities (Tu = 4.2% and 10.5%) are considered. Conduction-free Pressure Sensitive Paint (PSP) technique is adopted to measure film-cooling effectiveness. Three foreign gases— N2 for low density, CO2 for medium density, and a mixture of SF6 and Argon for high density are selected to study the effect of coolant density. The test blade features 2 rows of cylindrical film-cooling holes on the suction side (45° compound), 4 rows on the pressure side (45° compound) and 3 around the leading edge (30° radial). The inlet and the exit Mach numbers are 0.24 and 0.44, respectively. Reynolds number of the mainstream flow is 7.5E105 based on the exit velocity and blade chord length. Results suggest that the PSP is a powerful technique capable of producing clear and detailed film effectiveness contours with diverse foreign gases. Large improvement on the pressure side and moderate improvement on the suction side effectiveness is witnessed when blowing ratio is raised from 1.2 to 1.7 and 1.1 to 1.4, respectively. No major improvement is seen thereafter with the downstream half of the suction side showing drop in effectiveness. The effect of increasing coolant density is to increase effectiveness everywhere on the pressure surface and suction surface except for the small region on the suction side, xss /Cx <0.2. Higher freestream turbulence causes effectiveness to drop everywhere except in the region downstream of the suction side where significant improvement in effectiveness is seen.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In