0

Full Content is available to subscribers

Subscribe/Learn More  >

Prediction of Ingress Through Turbine Rim Seals: Part 2—Combined Ingress

[+] Author Affiliations
J. Michael Owen, Oliver Pountney, Gary Lock

University of Bath, Bath, UK

Paper No. GT2010-23349, pp. 1235-1245; 11 pages
doi:10.1115/GT2010-23349
From:
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 4: Heat Transfer, Parts A and B
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4399-4 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME

abstract

In Part1 of this two-part paper, the orifice equations were solved for the case of externally-induced ingress, where the effects of rotational speed are negligible. In Part 2, the equations are solved, analytically and numerically, for combined ingress (CI) where the effects of both rotational speed and external flow are significant. For the CI case, the orifice model requires the calculation of three empirical constants, including Cd,e,RI and Cd,e,EI , the discharge coefficients for rotationally-induced (RI) and externally-induced (EI) ingress. For the analytical solutions, the external distribution of pressure is approximated by a linear saw-tooth model; for the numerical solutions, a fit to the measured pressures is used. It is shown that, although the values of the empirical constants depend on the shape of the pressure distribution used in the model, the theoretical variation of Cw,min (the minimum nondimensional sealing flow rate needed to prevent ingress) depends principally on the magnitude of the peak-to-trough pressure difference in the external annulus. The solutions of the orifice model for Cw,min are compared with published measurements, which were made over a wide range of rotational speeds and external flow rates. As predicted by the model, the experimental values of Cw,min could be collapsed onto a single curve, which connects the asymptotes for RI and EI ingress at the respective smaller and larger external flow rates. At the smaller flow rates, the experimental data exhibit a minimum value of Cw,min , which undershoots the RI asymptote. Using an empirical correlation for Cd,e , the model is able to predict this undershoot, albeit smaller in magnitude than the one exhibited by the experimental data. The limit of the EI asymptote is quantified, and it is suggested how the orifice model could be used to extrapolate effectiveness data obtained from an experimental rig to engine-operating conditions.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In