Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Analysis of Heat Transfer and Flow Stability in an Open Rotating Cavity Using the Maximum Entropy Production Principle

[+] Author Affiliations
D. Bohn, R. Krewinkel, A. Wolff

RWTH Aachen University, Aachen, Germany

Paper No. GT2010-22025, pp. 913-920; 8 pages
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 4: Heat Transfer, Parts A and B
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4399-4 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME


The flow field and heat transfer in the internal cooling system of gas turbines can be modelled using rotating-disc systems with axial throughflow. Because of the complexity of these flows, in which buoyancy-induced phenomena are of the utmost importance, numerical studies are notoriously difficult to perform and need extensive experimental validation. J.M. Owen proposed using the Maximum Entropy Production (MEP) Principle as a possible means of simplifying numerical computations for these complex flows. This theory is based on the heat flux out of the cavity. In this numerical study, the Nusselt numbers on the disc walls inside an open rotating cavity with a Rayleigh number of approximately 4.97×108 are evaluated with regard to the computed Nusselt numbers on the disc walls. These can be considered to be representative of the flow inside the cavity. It is shown that, as predicted by Owen, the flow is stable when the heat transfer out of the cavity is maximised, or, conversely, the system is unstable when the heat transfer is minimised. Furthermore, it is proven that the level of the Nusselt number plays an important role for the change between the number of vortex pairs in the flow as well.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In