Full Content is available to subscribers

Subscribe/Learn More  >

Modeling Separation-Induced Transition Using a Non-Linear Three Equation Turbulence Model and a Reynolds Stress Turbulence Model

[+] Author Affiliations
Zinon Vlahostergios, Kyros Yakinthos

Aristotle University of Thessaloniki, Thessaloniki, Greece

Paper No. GT2010-23331, pp. 901-911; 11 pages
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 4: Heat Transfer, Parts A and B
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4399-4 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME


This paper presents an effort to model separation-induced transition on a flat plate with a semi-circular leading edge, by using two advanced turbulence models, the three equation non-linear model k-ε-A2 of Craft et al. [16] and the Reynolds-stress model of Craft [13]. The mechanism of the transition is governed by the different inlet velocity and turbulence intensity conditions, which lead to different recirculation bubbles and different transition onset points for each case. The use of advanced turbulence models in predicting the development of transitional flows has shown, in past studies, good perspectives. The k-ε-A2 model uses an additional transport equation for the A2 Reynolds stress invariant and it is an improvement of Craft et al. [12] non-linear eddy viscosity model. The use of the third transport equation gives improved results in the prediction of the longitudinal Reynolds stress distributions and especially, in flows where transitional phenomena may occur. Although this model is a pure eddy-viscosity model, it borrows many aspects from the more complex Reynolds-stress models. On the other hand, the use of an advanced Reynolds-stress turbulence model, such as the one of Craft [13], can predict many complex flows and there are indications that it can be applied to transitional flows also, since the crucial terms of Reynolds stress generation are computed exactly and normal stress anisotropy is resolved. The model of Craft [13], overcomes the drawbacks of the common used Reynolds-stress models regarding the computation of wall-normal distances and vectors in order to account for wall proximity effects. Instead of these quantities, it employs “normalized turbulence lengthscale gradients” which give the ability to identify the presence of strong inhomogeneity in a flow development, in an easier way. The final results of both turbulence models showed acceptable agreement with the experimental data. In this work it is shown that there is a good potential to model separation-induced transitional flows, with advanced turbulence modeling without any additional use of ad-hoc modifications or additional equations, based on various transition models.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In