0

Full Content is available to subscribers

Subscribe/Learn More  >

The Effects of Localized Blade Endwall Suction on Secondary Flows and Heat Transfer

[+] Author Affiliations
Rebecca Hollis, Jeffrey P. Bons

Ohio State University, Columbus, OH

Paper No. GT2010-23664, pp. 861-871; 11 pages
doi:10.1115/GT2010-23664
From:
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 4: Heat Transfer, Parts A and B
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4399-4 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME

abstract

Two methods of flow control were designed to mitigate the effects of the horseshoe vortex structure (HV) at an airfoil/endwall junction. An experimental study was conducted to quantify the effects of localized boundary layer removal on surface heat transfer in a low-speed wind tunnel. A transient infrared technique was used to measure the convective heat transfer values along the surface surrounding the juncture. Particle image velocimetry was used to collect the time-mean velocity vectors of the flow field across three planes of interest. Boundary layer suction was applied through a thin slot cut into the leading edge of the airfoil at two locations. The first, referred to as Method 1, was directly along the endwall, the second, Method 2, was located at a height ∼1/3 of the approaching boundary layer height. Five suction rates were tested; 0%, 6.5%, 11%, 15% and 20% of the approaching boundary layer mass flow was removed at a constant rate. Both methods reduced the effects of the HV with increasing suction on the symmetry, 0.5-D and 1-D planes. Method 2 yielded a greater reduction in surface heat transfer but Method 1 outperformed Method 2 aerodynamically by completely removing the HV structure when 11% suction was applied. This method however produced other adverse effects such as high surface shear stress and localized areas of high heat transfer near the slot edges at high suction rates.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In