Full Content is available to subscribers

Subscribe/Learn More  >

Heat Transfer and Pressure Drop in Combustor Cooling Channels With Combinations of Geometrical Elements

[+] Author Affiliations
Sébastien Kunstmann

Universitä Stuttgart, Stuttgart, Germany

Jens von Wolfersdorf

Universität Stuttgart, Stuttgart, Germany

Uwe Ruedel

ALSTOM, Baden, Switzerland

Paper No. GT2010-23234, pp. 835-846; 12 pages
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 4: Heat Transfer, Parts A and B
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4399-4 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME and Alstom Technology, Ltd.


An investigation was conducted to assess the thermal performance of 90° ribs, low and high W-shaped ribs, and combinations of low W-shaped ribs with high W-shaped ribs and with dimples in a rectangular channel with an aspect ratio (W/H) of 2:1. The blockage ratios (e/Dh ) were 0.02 with the 90° ribs and the low W-shaped ribs and 0.06 with high W-shaped ribs. The rib pitch-to-height ratio (P/e) were 10 and 20. The channel height-to-dimple diameter (H/D) was 16.67; the dimple depth-to-dimple diameter (δ/D) was 0.3. The ribs and the dimples were located on one channel wall (side W). Furthermore, W-shaped ribs and 90° ribs with e/Dh = 0.027 and P/e = 10 were also individually investigated in a test channel with 1/4 of its cross section blocked. The Reynolds numbers investigated (Re > 100k) are typical for combustor liner cooling configurations in gas turbines. Local heat transfer coefficients using the transient thermochromic liquid crystal technique and overall pressure losses were measured. The different configurations were investigated numerically to visualize the flow pattern in the channel and to support the understanding of the experimental data. The results show that the highest heat transfer enhancement rates are obtained by a combination of W-shaped ribs with P/e = 10 and e/Dh = 0.06 and W-shaped ribs with P/e = 10 and e/Dh = 0.02. The best thermal performance is achieved by regularly spaced lower W-shaped ribs and by a compound roughness of regularly spaced W-shaped ribs and dimples at Re below and above 300,000, respectively.

Copyright © 2010 by ASME and Alstom Technology, Ltd.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In