Full Content is available to subscribers

Subscribe/Learn More  >

Heat Transfer and Pressure Losses of W-Shaped Small Ribs at High Reynolds Numbers for Combustor Liner

[+] Author Affiliations
Tomoko Hagari, Katsuhiko Ishida, Takeo Oda, Yasushi Douura, Yasuhiro Kinoshita

Kawasaki Heavy Industries, Ltd., Akashi, Japan

Paper No. GT2010-23197, pp. 825-834; 10 pages
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 4: Heat Transfer, Parts A and B
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4399-4 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME


The present study investigates the heat transfer performance of W-shaped ribs in a rectangular channel with typical geometries and flow conditions for a combustor liner cooling passage. In order to assess the Reynolds number dependence on heat transfer enhancement by the ribs for the combustor cooling passage, experiments were conducted with channel Reynolds number ranging from 40,000 to 550,000. The ribs were located on one side of the channel and the rib height-to-hydraulic diameter ratio (e/Dh ) was 0.006 to 0.014, which simulate the combustor liner cooling configurations. Rib pitch-to-height ratio (P/e) was 10. Rib-roughened copper plates with constant temperature were used to measure the averaged heat transfer coefficients. Measured results show that the heat transfer enhancements of about 3 were obtained over that of a flat plate at high Reynolds numbers for all cases. The slope of heat transfer coefficient becomes constant with increasing Reynolds number because of the laminar-turbulent transition around the ribs, which is considered to occur at Reynolds number based on rib height of about 1,000. Pressure loss measurements showed that the friction coefficients are constantly 3–4.5 times higher than those of a flat plate for a fully turbulent flow such as a combustor cooling passage. Pressure loss by ribs seems not to have a significant impact to the overall combustor performance. Numerical calculations were conducted additionally for all test cases. Predicted amount of heat released from the ribs contributes about 40% of overall heat release even for low ribs. Heat transfer on the rib surface is essential in the evaluation of the rib-roughened cooling passage.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In