0

Full Content is available to subscribers

Subscribe/Learn More  >

The Effect of Geometry on the Aerodynamics of a Prototype Gas Turbine Combustor

[+] Author Affiliations
Bassam Mohammad, San-Mou Jeng

University of Cincinnati, Cincinnati, OH

Paper No. GT2010-23082, pp. 795-808; 14 pages
doi:10.1115/GT2010-23082
From:
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 4: Heat Transfer, Parts A and B
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4399-4 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME

abstract

The method of admission of the swirling flow to the combustion chamber has a strong influence on the flow field structure in Gas Turbine Combustors (GTC). Two different exit configurations are studied. The first configuration is that of a swirl cup that ends only with a splash plate such that there is a sudden unguided expansion as the flow emanates from the swirl cup. The second is a swirl cup that ends with a splash plate and an asymmetric combustion dome. Laser Doppler Velocimetry (LDV) measurements are conducted in the horizontal plane (X-Y), for both configurations, 5mm from the flare exit. Also, LDV measurements are conducted in two vertical planes passing by the combustor centerline (X-Z and Y-Z). The results reveal a significant difference in the flow structure for both configurations. The combustion dome appears to reduce the turbulence activities close to the exit of the swirl cup. In addition, the presence of the combustion dome eliminates the corner recirculation zone and the low velocity region close to the combustor walls. It is interesting to see that the asymmetry of the combustion dome (9° difference in the expansion angle on both sides) results in a significant asymmetry in the velocity magnitude as well as the turbulence activities. Moreover, the asymmetry in the combustion dome results in a tilting of the CRZ toward the surface with the higher expansion angle. The results highlight the importance of the proper and careful design of the GTC front section. The experiments are conducted in a dump combustor (rectangular cross section). To study the effect of the chamber geometry on the flow field, the base configuration is installed in an annular combustor sector and LDV measurements are conducted in the axial radial plane (X-Z). The flow field as well as the shape of the CRZ are significantly different in both cases. The CRZ height reduced by 40% with the swirl cup installed to the SAC sector. The results emphasize the strong influence of the confinement on the flow structure.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In