Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Study of Aerodynamic Losses of Effusion Cooling Holes in Aero-Engine Combustor Liners

[+] Author Affiliations
A. Andreini, A. Bonini, G. Caciolli, B. Facchini

University of Florence, Florence, Italy

S. Taddei

AVIO Group S.p.A., Rivalta, TO, Italy

Paper No. GT2010-22942, pp. 773-786; 14 pages
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 4: Heat Transfer, Parts A and B
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4399-4 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME


Due to the stringent cooling requirements of novel aeroengines combustor liners, a comprehensive understanding of the phenomena concerning the interaction of hot gases with typical coolant jets plays a major role in the design of efficient cooling systems. In this work an aerodynamic analysis of the effusion cooling system of an aero-engine combustor liner was performed; the aim was the definition of a correlation for the discharge coefficient (CD ) of the single effusion hole. The data was taken from a set of CFD RANS simulations, in which the behavior of the effusion cooling system was investigated over a wide range of thermo fluid-dynamics conditions. In some of these tests, the influence on the effusion flow of an additional air bleeding port was taken in account, making possible to analyze its effects on effusion holes CD . An in depth analysis of the numerical data set has pointed out the opportunity of an efficient reduction through the ratio of the annulus and the hole Reynolds numbers: the dependence of the discharge coefficients from this parameter is roughly linear. The correlation was included in an in-house one dimensional thermo-fluid network solver and its results were compared with CFD data. An overall good agreement of pressure and mass flow rates distributions was observed. The main source of inaccuracy was observed in the case of relevant air bleed mass flow rates, due to the inherent three-dimensional behavior of the flow close to bleed opening. An additional comparison with experimental data was performed in order to improve the confidence in the accuracy of the correlation: within the validity range of pressure ratio in which the correlation is defined (> 1.02), this comparison pointed out a good reliability in the prediction of discharge coefficients. An approach to model air bleeding was then proposed, with the assessment of its impact on liner wall temperature prediction.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In