Full Content is available to subscribers

Subscribe/Learn More  >

Channel Height and Jet Spacing Effect on Heat Transfer and Uniformity Coefficient on an Inline Row Impingement Channel

[+] Author Affiliations
Mark Ricklick, Roberto Claretti, J. S. Kapat

University of Central Florida, Orlando, FL

Paper No. GT2010-23757, pp. 675-684; 10 pages
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 4: Heat Transfer, Parts A and B
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4399-4 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME


Future high performance turbine airfoils will likely be cooled in a near wall configuration, potentially employing a combination of narrow, distributed internal cooling channels and impingement. In such applications, the jets impinge against a target surface, and then exit along the channel formed by the jet plate, target plate, and side walls. Local convection coefficients are the result of both the jet impact, as well as the channel flow produced from the exiting jets and the complex interaction between the jet and the cross flow. Numerous studies have explored the effects of jet array and channel configurations on both target and jet plate heat transfer coefficients, yet with little consideration of thermal stress related effects. A detailed study on the uniformity coefficient that these jets and cross flow generate on the surface is carried out. It is important to maintain a high uniformity coefficient while still having a high heat transfer coefficients to reduce thermal stresses. It is also important to use as little flow as possible while maintaining a high heat transfer coefficient. The study presented experimentally investigates the effects of wall height, jet Reynolds number, and jet spacing on the Nusselt number and uniformity of a narrow inline row impingement channel. The channel height was set at 1, 3, and 5 diameters, jet spacing was 5 and 15 diameters, and the channel width was kept constant at 4 diameters. Although heat transfer coefficients are highly sensitive to the jet Reynolds number and channel height, the uniformity of the distribution is mainly governed by the channel height and jet spacing. A channel height of 3 jet diameters tended to produce the best uniformity coefficients, regardless of the jet to jet spacing; with side walls out performing target surfaces.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In