0

Full Content is available to subscribers

Subscribe/Learn More  >

Fully-Cooled Single Stage HP Transonic Turbine: Part I—Influence of Cooling Mass Flow Variations and Inlet Temperature Profiles on Blade Internal and External Aerodynamics

[+] Author Affiliations
C. W. Haldeman, M. G. Dunn, R. M. Mathison

The Ohio State University, Columbus, OH

Paper No. GT2010-23446, pp. 539-553; 15 pages
doi:10.1115/GT2010-23446
From:
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 4: Heat Transfer, Parts A and B
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4399-4 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME

abstract

A fully cooled turbine stage is utilized to investigate the combined effects of turbine stage cooling variation and HPT vane inlet temperature profile on the aerodynamics and heat transfer of the turbine stage operating at the proper design corrected conditions. Part I of this paper describes the overall experimental matrix, the influence of the cooling mass flows, and temperature profiles from an aerodynamic perspective. The measurements include internal and external pressures for the blade airfoil. Part II of this paper focuses on the influence of these parameters on the heat transfer to the blade airfoil and the stationary blade shroud. The major results show that cooling levels do not significantly affect the external pressure distributions over the majority of the blade and vane. However, aerodynamic effects of cooling levels and temperature profiles are seen for the vane and blade pressure loading on the suction surfaces. The magnitude of these effects range from 5 to 10% of the local measurement for the reference case, which is the uniform inlet profile with nominal cooling for this study. Inlet temperature profiles and cooling levels have comparable impacts on pressure loading, but their relative influence changes with location, Reynolds number and corrected speed variations have the lowest impact on pressure loading changes, with changes below 5% of the local measurements. Another important result is that unlike un-cooled experiments, the proper normalizing variable for pressures aft of the vane is not the inlet pressure but a “Rotor Reference Pressure”, which adjusts the total inlet pressure by the increase in pressure resulting from the additional cooling mass flows. For the rotor, this consists primarily of the vane trailing edge cooling flows. This simplified model accounts for the effects of the vane cooling, and isolates the changes due to blade cooling. The spread of the cooling flows through the stage is important to the surface heat flux, and has an impact on pressure loadings on the suction surface. The data establishes important guidelines for modelers of cooling flows. The changes observed on the suction side of the airfoils are real, but quite small from an engineering design perspective. Thus the pressure levels are stable and relatively independent of cooling levels, which is critical for good heat-transfer predictions.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In