Full Content is available to subscribers

Subscribe/Learn More  >

Fully-Cooled Single Stage HP Transonic Turbine: Part II—Influence of Cooling Mass Flow Changes and Inlet Temperature Profiles on Blade and Shroud Heat-Transfer

[+] Author Affiliations
C. W. Haldeman, M. G. Dunn, R. M. Mathison

The Ohio State University, Columbus, OH

Paper No. GT2010-23445, pp. 525-538; 14 pages
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 4: Heat Transfer, Parts A and B
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4399-4 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME


A fully cooled transonic HP turbine stage is utilized to investigate the combined effects of turbine stage cooling variation and vane inlet temperature profile on heat transfer to the blades with the stage operating at the proper design corrected conditions. For this series of experiments, both the vane row and the blade row were fully cooled. The matrix of experimental conditions included varying the cooling flow rates and the vane inlet temperature profiles to observe the overall effect on airfoil heat-transfer. The data presented in Part I focused on the aerodynamics of the fully cooled turbine for a subset of the cases investigating two vane inlet temperature profiles (uniform and radial), and three different cooling levels (none, nominal and high) for the high Reynolds number condition. This part of the paper focuses on the time-average heat-flux measurements on the blade and shroud region for the same cooling mass flow rates and vane inlet temperature profiles. The cooling effects are shown to be small and are centered primarily on the suction side of the airfoil. This relatively small influence is due to the ratio of the cooling gas to metal temperature being closer to 1 than the design value would dictate. The vane inlet temperature profile effects are more dominant, and using a Net Stanton Number Reduction Factor to compare the cases, an effect on the order of about 0.25 is demonstrated. This effect is due primarily to the change in the reference temperature used for the Stanton number calculation. The differences due to profile effects are small, but observable towards the trailing edge of both the blade and rotor shroud. This data set forms an excellent baseline for heat-flux calculations, as the variation in the main input conditions are well documented and do not produce large changes in the heat-flux. It provides insight into the flow physics of an actual engine and guidelines about proper normalization of variables for a cooled turbine stage, supporting further development of computational heat-flux modeling techniques.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In