Full Content is available to subscribers

Subscribe/Learn More  >

Prediction of the Influence of Upstream Wake Passing on Downstream Blade Row External Heat Transfer Coefficient: A New Physically-Based Method

[+] Author Affiliations
K. S. Chana

QinetiQ Ltd., Farnborough, Hampshire, UK

B. R. Haller

Alstom Power, Rugby, UK

Paper No. GT2010-23314, pp. 517-524; 8 pages
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 4: Heat Transfer, Parts A and B
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4399-4 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME


For gas turbines, accurate prediction of the external heat transfer coefficient on the high pressure (HP) turbine rotor blades is of immense importance, as this component is critical and operates at material limits. Furthermore the external heat load is the governing boundary condition for the design of the internal cooling system of the blade. There is a continuous drive to increase the turbine entry temperature to increase the cycle efficiency, whilst developing blade cooling systems with higher efficiency (i.e. using less cooling air). A new systematic procedure has been developed and validated to predict the external heat transfer to a blade surface. The procedure allows for the unsteady effects caused by the passing of upstream nozzle guide vane (NGV) wakes. The early part of the suction surface was shown to have a pessimistic prediction of external heat transfer coefficient which resulted in unnecessary over-cooling of the blade in this region. The heat transfer aspect is found from the well-known TEXSTAN differential boundary layer method, developed by Mike Crawford at Texas University from the original approach of Spalding & Patankar. The method is validated against the MT1 turbine tested in the QinetiQ Turbine Test Facility. Predictions and comparisons have also been carried out on the VKI turbine stage. The level of agreement with the test data is shown to be good.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In