0

Full Content is available to subscribers

Subscribe/Learn More  >

Momentum and Thermal Boundary Layer Development on an Internally Cooled Turbine Vane

[+] Author Affiliations
Jason E. Dees, David G. Bogard

The University of Texas at Austin, Austin, Texas

Gustavo A. Ledezma, Gregory M. Laskowski

GE Global Research Center, Niskayuna, NY

Anil K. Tolpadi

GE Energy, Schenectady, NY

Paper No. GT2010-23008, pp. 457-469; 13 pages
doi:10.1115/GT2010-23008
From:
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 4: Heat Transfer, Parts A and B
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4399-4 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME

abstract

Recent advances in computing power have made conjugate heat transfer simulations of turbine components increasingly popular; however, limited experimental data exists with which to evaluate these simulations. The primary parameter used to evaluate simulations is often the external surface temperature distribution, or overall effectiveness. In this paper, the overlying momentum and thermal boundary layers at various streamwise positions around a conducting, internally cooled simulated turbine vane were measured under low (Tu = 0.5%) and high (Tu = 20%) freestream turbulence conditions. Furthermore, experimental results were compared to computational predictions. In regions were a favorable pressure gradient existed, the thermal boundary layer was found to be significantly thicker than the accompanying momentum boundary layer. Elevated freestream turbulence had the effect of thickening the thermal boundary layer much more effectively than the momentum boundary layer over the entire vane. This data is valuable in understanding the conjugate heat transfer effects on the vane as well as serving as a tool for computational code evaluation.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In