0

Full Content is available to subscribers

Subscribe/Learn More  >

Temperature Predictions and Comparison With Measurements for the Blade Leading Edge and Platform of a 1-1/2 Stage Transonic HP Turbine

[+] Author Affiliations
R. M. Mathison, M. B. Wishart, C. W. Haldeman, M. G. Dunn

The Ohio State University, Columbus, OH

Paper No. GT2010-22987, pp. 433-446; 14 pages
doi:10.1115/GT2010-22987
From:
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 4: Heat Transfer, Parts A and B
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4399-4 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME

abstract

A series of computational predictions generated using FINE/Turbo are compared with data to investigate implementation techniques available for predicting temperature migration through a turbine stage. The experimental results used for comparison are from a one-and-one-half stage turbine operating at design-corrected conditions in a short-duration facility. Measurements of the boundary conditions are used to set up the computational models, and the predicted temperatures are compared to measured fluid temperatures at the blade leading edge and just above the blade platform. Fluid temperature measurements have not previously been available for these locations in a transonic turbine operating at design-corrected conditions, so this represents a novel comparison. Accurate predictions for this short-duration turbine experiment require use of the iso-thermal wall boundary condition instead of an adiabatic boundary condition and accurate specification of the inlet temperature profile all the way to the wall. Predictions using the harmonic method agree with the temperatures measured for the blade leading edge from 65% to 95% span to within 1% normalized temperature data. Agreement over much of the rest of the leading edge is within 5% of the measured value. Comparisons at 5–10% span and for the blade platform show larger differences up to 10%, which indicates that the flow in this region is not fully captured by the prediction. This is not surprising since the purge cavity and platform leading edge features present in the experiment are treated as a smooth hub wall in the current simulation. This work represents a step towards the larger goal of accurately predicting surface heat-flux for the complicated environment of an operational engine as it is reproduced in a laboratory setting. The experiment upon which these computations are based includes realistic complications such as one-dimensional and two-dimensional inlet temperature profiles, a heavily film-cooled vane, and purge cooling. While the ultimate goal is to accurately handle all of these features, the current model focuses on the treatment of a subset of experiments performed for a one-dimensional radial inlet temperature profile and no cooling.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In