0

Full Content is available to subscribers

Subscribe/Learn More  >

Heat Transfer Characteristics of an Oblique Jet Impingement Configuration in a Passage With Ribbed Surfaces

[+] Author Affiliations
Florian Hoefler, Simon Schueren, Jens von Wolfersdorf

Universität Stuttgart, Stuttgart, Germany

Shailendra Naik

Alstom Power, Baden, Switzerland

Paper No. GT2010-22288, pp. 127-138; 12 pages
doi:10.1115/GT2010-22288
From:
  • ASME Turbo Expo 2010: Power for Land, Sea, and Air
  • Volume 4: Heat Transfer, Parts A and B
  • Glasgow, UK, June 14–18, 2010
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4399-4 | eISBN: 978-0-7918-3872-3
  • Copyright © 2010 by ASME

abstract

Heat transfer measurements of a confined impingement cooling configuration with ribs on the target surfaces are presented. The assembly consists of four non-perpendicular walls of which one holds two rows of staggered inclined jets, each impinging on a different adjacent wall. The ribs are aligned with the inclined jet axes, have the same pitch and are staggered to the impinging jets. The flow exhausts through two staggered rows of holes opposing the impingement wall. The passage geometry is related to a modern gas turbine blade cooling configuration. A transient liquid crystal technique was used to take spatially resolved surface heat transfer measurements for the ground area between the ribs. A comparison with the smooth baseline configuration reveals local differences and a generally reduced heat transfer for the rib-roughened case. Furthermore, lumped heat capacity measurements of the ribs yielded area averaged heat transfer information for the ribs. From the combination of ground and rib heat transfer measurements it is concluded that the overall performance of the ribbed configuration depends on the Reynolds number. Of the five investigated jet Reynolds numbers from 10,000 up to 75,000, only for the highest Re the averaged Nusselt numbers increase slightly compared to the smooth baseline configuration.

Copyright © 2010 by ASME
Topics: Heat transfer

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In